Math REU Apprentice Program Alternate Proof of the Spectral Theorem

نویسنده

  • Julian Hartman
چکیده

This paper is a proof of the Spectral Theorem; a theorem that was proven in the apprentice class but not in this manner. Because the Spectral Theorem is such a fundamental theorem in linear algebra, it is important to explore it further through an alternate proof.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chicago Math REU Apprentice Program Exercises Friday , July 24 Instructor : László Babai Scribe : Angela

Exercise 25.2. Recall that for A ∈Mn(R) with A = A , the Rayleigh quotient is defined as RA(x) = xTAx xT x . For symmetric φ : V → V , the Rayleigh quotient is defined as Rφ(x) = 〈x,φx〉 ||x||2 . Use the above theorem to show that argmaxxRφ(x) is achieved on V \ {0}. Proof. Note that Rφ(αx) = Rφ(x). So any value achieved by Rφ on V \ {0} is achieved on the unit sphere {x ∈ V | ||x|| = 1}. Restri...

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009